Formación de Planetesimales **Dinámica del polvo**

Fig. 2.2. The vertical structure of geometrically thin disks is set by a balance between the vertical component of the star's gravity g_z and a pressure gradient. Γ : Ω Ω Γ Γ ering the vertical structure of good.
hetween the vertical component of the str at cylindrical radius r around a star of mass M∗. The vertical component of the 2.2. The vertical structure of geometrically thin disks is set by a balance between the vertical component of the star's gravity g_z and a pressure gradient. an
nt e

r

Equilibrio hidrostático Equilibrio hidrostático

$$
g_z = g \sin \theta = \frac{GM_*}{(r^2 + z^2)} \frac{z}{(r^2 + z^2)^{1/2}}, \quad \longrightarrow \quad c_s^2 \frac{d\rho}{dz} = -\frac{GM_* z}{(r^2 + z^2)^{3/2}} \rho. \quad \longrightarrow \quad \rho = C \exp\left[\frac{GM_*}{c_s^2(r^2 + z^2)^{1/2}}\right],
$$

 $-z^2/2h^2$ $-z^2/2i$ $\rho = \rho_0 e^{-z^2/2h^2}$

at cylindrical radius r around a star of mass M∗. The vertical component of the **La densidad var** \mathcal{V} is set of integration \mathcal{V} is rather we note that for a thin disk r and r is rather, we note that for a thin disk z where the formal that for a thin disk α h^2 is the Keplerian and vertical density. In this limit the vertical density. In this limit of vertical density h^2 profile the simple form V erticall ^ρ ⁼ ^ρ0e−z2/2h² verticalmente como una La densidad varía gaussiana en z.

ן
| $,$

μm dust 50 km planetesimal

MJup Giant Planet

Magnitude and Different Processes

Asteroides

Planetas rocosos

Planetas gigantes 100.000.000 metros

50 km planetesimal

*μ***m polvo 0.000001 metros**

 \mathbb{R}^3

mass growth and the contract

Formación de planetas 3 etapas (a grandes rasgos)

- 1. **Proceso de coagulación,** donde la fuerza dominante es la fricción con el gas. Acá es donde se forman los *planetesimales* (~100 m - 100 km).
- 2. **Proceso de acreción,** donde la dominan fuerzas gravitatorias, se forman planetas terrestres y núcleos de planetas gigantes por acreción de planetesimales y *pebbles*.
- 3. **Formación de planetas gigantes y migración**. Una vez que los núcleos se vuelven lo suficientemente masivos (~10 M_earth), capturan gas del disco.

Formación de planetesimales Roce aerodinámico!

- Suponemos la siguiente situación: tenemos una estrella central y un disco de gas y polvo orbitando a su alrededor
- El gas tiene presión y por ende no orbita de forma perfectamente Kepleriana.

Tres regímenes

-
-
-

Regimen 1 Fricción de Epstein *s* < *λ*mfp

- Las partículas están bien acopladas al gas. El fluido (gas + polvo) se comporta como un gas sin colisiones con una distribución de velocidades Maxwelliana.
- Importante para interpretar observaciones en infrarrojo cercano por ejemplo.

Colisiones Crecimiento fractal

- Cuándo las partículas son muy pequeñas y acopladas al gas, el movimiento browniano domina las colisiones.
- Hay diferencias de velocidad pequeñas entre las partículas. El crecimiento funciona como un "hit-and-stick" y se forman agregados fractales. Annual
Astronomys.
Compared from www.annualreviews.org but and define the children on \mathbf{R}

Blum & Wurm 2008

Colisiones Crecimiento fractal

- Cuándo las partículas son muy pequeñas y acopladas al gas, el movimiento browniano domina las colisiones.
- Hay diferencias de velocidad pequeñas entre las partículas. El crecimiento funciona como un "hit-and-stick" y se forman agregados fractales.

Simulations by Alexander Seizinger

Regimen 2 Fricción de Stokes *s* > *λ*mfp

- Las partículas no están del todo acopladas al gas. Se mueven con v_{Kep} , por lo que irán más rápido que el gas (que se frena por la componente de presión).
- El que el polvo y el gas tengan velocidades distintas hace que el polvo experimente un **roce aerodinámico**.
- Ese roce hace que las partículas migren hacia adentro, decayendo orbitalmente como una espiral a la estrella

Importante: partículas de diferentes tamaños tienen diferentes velocidades relativas, lo que induce a colisiones mutuas, favoreciendo la coagulación.

Experimentos En laboratorio

• Se necesita microgravedad

Team Blum et al.

Regimen 3

- Cuando la partículas alcanzan un tamaño del orden de un planetesimal.
- Las fuerzas de roce con el gas y la aceleración causada por la fricción dejan de ser relevantes.

Dust settling (Asentamiento)

• La fricción aerodinámica es importante para entender ambas, la distribución vertical y el movimiento radial del material sólido dentro del disco.

•

Villenave et al. 2020

Meter-sized barrier = Fragmentation Bouncing Drift

Blum & Wurm 2008

Solutions:

Porosity / fluffineess

Figure 5

Simulations by Alexander Seizinger

Material: 1.2 um amorphous silicate grains

Impact Velocity: 5 m/s

1990)
1992 - Child Coordination Number: 2.44
2011 - Capital Coordination Number: 2.44

Solutions:

Velocity distributions Collisions between different sizes (lucky particles)

Simulations by Alexander Seizinger

Material: 1.2 µm amorphous silicate grains

Impact Velocity: 1 m/s

© 2011 Alexander Seizinger

Solutions:

Velocity distributions Collisions between different sizes (lucky particles)

Initial Coordination Number: 2.44

Solutions:

Particle concentrations dust traps

 \Leftarrow **log P**

FIG. 21 Illustration of how local pressure maxima within a disk could concentrate solid bodies, forming a ring in this idealized axisymmetric example. Local pressure maxima might arise as a consequence of turbulence within the disk.

Solutions:

Particle concentrations dust traps

Vortex / dust trap

HD 142527 visto por ALMA (Casassus et al. 2013)

Solutions:

Particle concentrations dust traps

HD142527 is actually a circumbinary disk, with an inner binary in a polar orbit (Price et al. 2018)

Solutions:

Particle concentrations dust traps

> Dong et al. 2018, Marino et al. 2015, Baruteau et al. (2018)

Azimuthal dust trap / RWI vortex

Pérez et al. 2018

Baruteau & Zhu (2016)

