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Evolución del disco

• Motivación: Si bien los discos son 
abundantes en regiones de formación 
estelar jóvenes, en regiones de mayor 
edad (50-60 Myr?) casi no hay. Eso 
significa que los discos tienen una 
evolución. 


• Caso del disco plano 
(geométricamente delgado):




• L aumenta con R. Para que el gas sea 
acertado por la estrella, necesita 
perder L.

l = rvϕ = GMr

Cieza et al. 2020
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Distintos trazadores (IR vs mm)
Qué nos dice de la fluido dinámica?

• Distintos trazadores nos dicen 
que el gas y el contenido sólido 
siguen distribuciones muy 
distintas. 


• A medida que el polvo crece, la 
presión del gas se vuelve menos 
importante que la gravedad. El 
polvo “cae” al plano medio.


• Los discos parecieran ser 
altamente turbulentos, pero no es 
lo que nos dicen los diagnósticos.

Miotello, A., Kamp, I., Birnstiel, T., Cleeves, L. I., Kataoka, A. Setting the Stage for Planet Formation

tion we review our current understanding of observational
constraints on the vertical distribution of dust grains.

The vertical distribution of dust grains is intimately
linked to the properties of the gas. As discussed, the verti-
cal structure of the gas is basically understood by the force
balance between vertical pressure gradient and the gravi-
tational force toward the midplane, which gives us the gas
scale height, hg = cs/

p
GM?/r3 = cs/⌦. The vertical

distribution of the dust strongly depends on how well cou-
pled grains are to the gas: dust grains that are well-coupled
to the gas should follow the gas profile, while dust grains
decoupled from the gas tend to settle toward the mid-plane
(e.g., Dubrulle et al. 1995).

The coupling of dust particles depends on the size of
the grains as encapsulated by their Stokes number (which
is approximately the ratio of the time scale required to ad-
just to the gas velocity, and the orbital time scale). Varia-
tions in the vertical distribution with grain-size is reflected
in the appearance of infrared and millimeter-wave observa-
tions, where the optically thick infrared observations trace
stirred-up micron-sized dust grains, while mostly optically
thick millimeter-wave observations trace settled millimeter-
sized dust grains close to the mid-plane. This is visually
demonstrated by comparing the images taken by ALMA
SPHERE, and HST (see IM Lup and Tau 042021 in Fig-
ure 8; Avenhaus et al. 2018; Andrews et al. 2018b; Villenave
et al. 2020).

The infrared scattered surface has been imaged at sev-
eral individual targets with facilities such as HiCIAO (e.g.,
Akiyama et al. 2016), GPI (e.g., Rapson et al. 2015; Wolff
et al. 2016), and SPHERE (van Boekel et al. 2017; Garufi
et al. 2016; Avenhaus et al. 2014b,a; Stolker et al. 2016;
Pohl et al. 2017) A systematic survey of disks’ infrared
surface layer has been performed with SPHERE (Avenhaus
et al. 2018), which shows that the aspect ratio is an increas-
ing function of the distance from the central star. They
found that the scattering surface for 5 disks is well rep-
resented by z/h = 0.16 (r/100 au)1.22. This is in broad
agreement with theoretical predictions of a flaring disk
model (e.g., Kenyon and Hartmann 1987; Chiang and Gol-
dreich 1997).

The millimeter-wave continuum emission is well mod-
eled with settled dust grains even in the pre-ALMA era
(e.g., Gräfe et al. 2013). With ALMA, there are several
lines of evidence of dust settling in millimeter-wave images.
An edge-on disk survey with ALMA enables us to directly
compare the vertical structures, showing that the optical-
NIR vertical scale is larger than the millimeter-observed
disks, which is the direct evidence of dust settling (see Fig.
8, Villenave et al. 2020). Substructures also hint the dust
settling status. High spatial resolution images of inclined
axisymmetric rings enable a geometrical estimate of the
vertical extent of the rings. HL Tau is consistent with a
geometrically flat disk (Pinte et al. 2016), which indicates
strong dust settling. However, this is not always the case;
HD 163296 has both puffed up and settled rings (Doi and
Kataoka 2021). This is also tested by comparing the dust

IR scattered 
light

sub-mm 
continuum

Fig. 8.— Top - Collage of observations of the disk around
IM Lup in different tracers: scattered light from small dust
on the top (Avenhaus et al. 2018), and sub-mm continuum
from mm-sized grains in the bottom (Andrews et al. 2018b).
The white dashed lines guide the eye to the disk surface
layer, seen in scattered light, while the continuum emis-
sion at mm wavelengths shows a flat and settled midplane.
Bottom - Combined observations of the edge-on disk Tau
042021 (Villenave et al. 2020). The scattered light emission
(colored map) is flared and vertically extended, while mm
emission (white contours) trace an extremely flat midplane.
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https://alma-maps.info/disks.html  
Top: 12CO 2-1 integrated intensity images from MAPS. Bottom: Millimeter continuum images 

from DSHARP (IM Lup, AS 209, HD 163296), Huang et al. 2020 (GM Aur), and MAPS (MWC 480).

El gas es mucho más extendido que el polvo, y muestra menos estructuras.

https://alma-maps.info/disks.html
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3.2 Surface density evolution of a thin disk

Consider an axisymmetric protoplanetary disk whose gas surface density profile

is given by !(r, t). We assume that the radial velocity vr (r, t) of gas in the disk

is small,2 and note that the fact that the disk is geometrically thin (h/r ≪ 1)

implies that the predominant forces at work are rotational support and gravity (cf.

Section 2.3). If the potential is time-independent, local conservation of angular

momentum implies that in the absence of angular momentum transport or loss

!(r, t) cannot change with time. Accretion and disk evolution will occur in the

presence of angular momentum transport (often described as “viscosity,” or, even

more loosely, as “friction”), which allows local parcels of gas to reduce their

angular momentum and spiral toward the star (global angular momentum con-

servation implies, of course, that gas elsewhere in the disk must gain angular

momentum and move outward). This redistribution of angular momentum due to

stresses within the disk is quite distinct from angular momentum loss – due for

example to a magnetically driven outflow from the disk surface – and the evo-

lution of disks under the action of winds is different from that due to internal

redistribution.

The qualitative evolution of disks in the presence of dissipative processes was

understood in the 1920s by, among others, the well-known geophysicist and

astronomer Harold Jeffreys. The modern theory of thin disks was described in

now-classic papers by Shakura & Sunyaev (1973) and Lynden-Bell & Pringle

(1974). This theory is not fully predictive as it largely bypasses the central ques-

tion of how efficiently angular momentum is transported within a disk flow, but it

nonetheless forms the indispensable core to any discussion of disk evolution.

The evolution of !(r, t) can be derived by considering the continuity equation

(expressing the conservation of mass) and the azimuthal component of the momen-

tum equation (expressing angular momentum conservation). The rate of change of

the mass within an annulus in the disk extending between r and r + "r is given by

∂

∂t
(2πr"r!) = 2πr!(r)vr (r) − 2π (r + "r)!(r + "r)vr (r + "r). (3.2)

Writing for example !(r + "r) = !(r) + (∂!/∂r)"r , and taking the limit for

small "r , the continuity equation yields

r
∂!

∂t
+

∂

∂r
(r!vr ) = 0. (3.3)

Following the same procedure (e.g. Pringle, 1981) conservation of angular momen-

tum gives

r
∂

∂t

(

r2%!
)

+
∂

∂r

(

r2% · r!vr

)

=
1

2π

∂G

∂r
, (3.4)

2 The radial velocity is defined such that vr < 0 corresponds to inflow.

De las ecuaciones de Navier-Stokes (continuidad y conservación de momentum angular) 

se puede derivar la evolución y estructura del disco.
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where !, the angular velocity of the gas in the disk, is at this point unspecified and

need not be the Keplerian angular velocity due to a point mass. The rate of change

of angular momentum in the disk is determined by the change in surface density

due to radial flows (the second term on the left-hand-side) and by the difference

in the torque exerted on an annulus by stresses at the inner and outer edges. For a

viscous fluid, the torque G can be written in the form

G = 2πr · ν$r
d!

dr
· r, (3.5)

where ν is the kinematic viscosity. The torque on an annulus is the product of the

circumference, the viscous force per unit length, and the lever arm r , and is pro-

portional to the gradient of the angular velocity. Note that this dependence, which

is characteristic of a viscous fluid, is only an assumption if the “viscosity” is not a

true microscopic process but rather an effective viscosity resulting from turbulence.

Proceeding, we eliminate vr between Eq. (3.3) and Eq. (3.4) and specialize to a

Keplerian potential for which ! ∝ r−3/2. We then obtain the evolution equation for

the surface density of a geometrically thin disk under the action of internal angular

momentum transport

∂$

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r

(

ν$r1/2
)

]

. (3.6)

The evolution equation is a diffusive partial differential equation for the surface

density $(r, t). It is linear if the viscosity ν is not itself a function of $. The equation

can also be derived directly from the Navier–Stokes equations for a viscous fluid

in cylindrical polar coordinates.

3.2.1 The viscous time scale

The diffusive form of Eq. (3.6) can be made more transparent with a change of

variables. Defining

X ≡ 2r1/2, (3.7)

f ≡
3

2
$X, (3.8)

and assuming that the viscosity ν is a constant, the evolution equation takes the

prototypical form of a diffusion equation

∂f

∂t
= D

∂2f

∂X2
, (3.9)

with a diffusion coefficient D given by

D =
12ν

X2
. (3.10)

Torque de un anillo/anulo 
depende de la fuerza viscosa 
(viscosidad nu) y el brazo de 

palanca (r)

∂ρ
∂t

+ ∇ ⋅ (ρv) = 0
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2 The radial velocity is defined such that vr < 0 corresponds to inflow.

integrando 
en z

Eliminamos v_r combinando ambas ecuaciones y asumimos que omega sigue 
las leyes de Kepler (velocidad angular va como r a la -3/2)
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and assuming that the viscosity ν is a constant, the evolution equation takes the

prototypical form of a diffusion equation

∂f

∂t
= D

∂2f

∂X2
, (3.9)

with a diffusion coefficient D given by

D =
12ν

X2
. (3.10)

Solución: Tiene la forma de una ecuación de 
difusión para la densidad superficial ! 

Evolución de la densidad superficial de un disco delgado (section 3.2, Armitage)
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Apart from its pedagogical value, this version of the evolution equation can be

useful numerically, since even naive finite difference schemes preserve conserved

quantities accurately when the equation is cast in this form. The diffusion time

scale across a scale !X implied by Eq. (3.9) is just (!X)2/D. Converting back

to the physical variables, we then find that the time scale on which viscosity will

smooth out surface density gradients on a radial scale !r is

τν ∼
(!r)2

ν
. (3.11)

If the disk has a characteristic size r , the surface density at all radii will evolve on

a time scale

τν ≈
r2

ν
. (3.12)

This last time scale is described as the viscous time scale of the disk. It can be

estimated observationally by measuring, for example, the rate at which accretion

on to the star decays as a function of stellar age. For protoplanetary disks around

Solar-type stars it appears to be of the order of a million years.

3.2.2 Solutions to the disk evolution equation

A steady-state solution to Eq. (3.6) can be derived by setting ∂/∂t = 0 and integrat-

ing the resultant ordinary differential equation for the surface density. Applying

the requisite boundary conditions is easiest if we start with the angular momentum

conservation equation (Eq. 3.4) which does not assume Keplerian angular velocity.

Setting the time derivative to zero and integrating, we have

2πr&vr · r2' = 2πr3ν&
d'

dr
+ constant. (3.13)

Noting that the mass accretion rate Ṁ = −2πr&vr we can write this equation in

the form

−Ṁ · r2' = 2πr3ν&
d'

dr
+ constant, (3.14)

where the constant of integration, which has the form of an angular momentum

flux, remains to be determined. To specify the constant, we note that at a location in

the disk where d'/dr = 0 the viscous stress vanishes, and the constant is simply

equal to the flux of angular momentum advected inward along with the mass,

constant = −Ṁ · r2'. (3.15)

A simple case to consider is that where the protoplanetary disk extends all the

way down to the surface of a nonrotating (or slowly rotating) star. The disk and

Conservación de 

momentum angular

Conservación de 

masa

Escala de tiempo viscoso
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Fig. 3.3. The Green’s function solution to the disk evolution equation with ν =
constant, showing the spreading of a ring of mass initially orbiting at r = r0. From
top down the curves show the behavior as a function of the scaled time variable
τ = 12νr−2

0 t , for τ = 0.004, τ = 0.008, τ = 0.016, τ = 0.032, τ = 0.064, τ =
0.128, and τ = 0.256.

realistic for protoplanetary disks, the resulting solutions suffice to illustrate the

essential behavior implied by the disk evolution equation. If ν = constant, a Green’s

function solution to the evolution equation is possible.4 Suppose that at t = 0, all

of the gas lies in a thin ring of mass m at radius r0

#(r, t = 0) =
m

2πr0
δ(r − r0), (3.21)

where δ(r − r0) is a Dirac delta function. Given boundary conditions that impose

zero-torque at r = 0 and allow for free expansion toward r = ∞ the solution is

(Lynden-Bell & Pringle, 1974)

#(x, τ ) =
m

πr2
0

1

τ
x−1/4 exp

[

−
(1 + x2)

τ

]

I1/4

(

2x

τ

)

, (3.22)

where we have written the solution in terms of dimensionless variables x ≡ r/r0,

τ ≡ 12νr−2
0 t , and I1/4 is a modified Bessel function of the first kind. Since the evolu-

tion equation is linear for ν = f (r), the time-dependent solution for arbitrary initial

conditions can formally be written as a superposition of these solutions. Although

this approach is rarely illuminating, the solution (Eq. 3.22), which is plotted in

Fig. 3.3, illustrates several generic features of disk evolution. As t increases the

initially narrow ring spreads diffusively, with the mass flowing toward r = 0 while

simultaneously the angular momentum is carried by a negligible fraction of the

4 Related solutions are known for the more general situation in which ν is a power-law in radius.
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Solución simple, con dependencia temporal, asumiendo que la evolución del disco comienza de un anillo delgado (delta de dirac)

Steady state solution con la derivada en el tiempo = 0
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where cs is some characteristic sound speed in the boundary layer region and !K is

the Keplerian angular velocity. Recalling that the vertical scale-height h = cs/!K

we find that

rbl

r
∼
(

h

r

)2

. (3.18)

Provided that the boundary layer (like the disk) is geometrically thin, we conclude

that force balance mandates that the radial extent of the boundary layer must also

be narrow.

We are now in a position to evaluate the constant in Eq. (3.14). For a narrow

boundary layer, R∗ + rbl ≃ R∗ and the maximum in ! occurs close to the stellar

surface. We have that

constant ≃ −ṀR2
∗

√

GM∗

R3
∗

, (3.19)

and the steady-state solution for the disk (within which the angular velocity is

Keplerian) simplifies to

ν# =
Ṁ

3π

(

1 −

√

R∗

r

)

. (3.20)

Once the viscosity is specified, this equation gives the steady-state surface density

profile of a protoplanetary disk with a constant accretion rate Ṁ . Away from the

inner boundary one notes that #(r) ∝ ν−1.

The solution given by Eq. (3.20) gives the surface density profile for a steady

disk subject to a zero-torque boundary condition at the inner edge. Physically, this

boundary condition is at least approximately realized for disks that extend to the

equator of a slowly rotating star, and it is also the traditional choice in the more

exotic circumstance of a disk of gas around a black hole. In classical T Tauri stars

it is often the case that stellar magnetic fields truncate the disk before it reaches

the stellar surface, and the resulting magnetic coupling between the star and the

inner disk can violate the zero-torque assumption. More generally, one should note

that the turnover in the surface density profile at small radii implied by Eq. (3.20)

reflects the fact that for a Keplerian flow the only way in which the torque can

vanish is if the surface density goes to zero. The turnover is therefore a purely

formal result – in a real disk with a boundary layer the physical reason why the

torque vanishes is because of the existence of a maximum in !(r) – and the inner

boundary condition needs to be considered carefully if one needs the detailed form

of the surface density very close to the inner edge of the disk.

Time-dependent analytic solutions to Eq. (3.6) can be derived for a number

of simple forms for the viscosity and, although these forms are not particularly
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a time scale

τν ≈
r2

ν
. (3.12)

This last time scale is described as the viscous time scale of the disk. It can be

estimated observationally by measuring, for example, the rate at which accretion

on to the star decays as a function of stellar age. For protoplanetary disks around

Solar-type stars it appears to be of the order of a million years.

3.2.2 Solutions to the disk evolution equation

A steady-state solution to Eq. (3.6) can be derived by setting ∂/∂t = 0 and integrat-

ing the resultant ordinary differential equation for the surface density. Applying

the requisite boundary conditions is easiest if we start with the angular momentum

conservation equation (Eq. 3.4) which does not assume Keplerian angular velocity.

Setting the time derivative to zero and integrating, we have

2πr&vr · r2' = 2πr3ν&
d'

dr
+ constant. (3.13)

Noting that the mass accretion rate Ṁ = −2πr&vr we can write this equation in

the form

−Ṁ · r2' = 2πr3ν&
d'

dr
+ constant, (3.14)

where the constant of integration, which has the form of an angular momentum

flux, remains to be determined. To specify the constant, we note that at a location in

the disk where d'/dr = 0 the viscous stress vanishes, and the constant is simply

equal to the flux of angular momentum advected inward along with the mass,

constant = −Ṁ · r2'. (3.15)

A simple case to consider is that where the protoplanetary disk extends all the

way down to the surface of a nonrotating (or slowly rotating) star. The disk and
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Fig. 3.4. The self-similar solution to the disk evolution equation is plotted for a
viscosity ν ∝ r . The initial surface density tracks the profile for a steady-state
disk (" ∝ r−1, Eq. 3.20) at small radius, before cutting off exponentially beyond
r = r1. The curves show the surface density at the initial value of the scaled time
T = 1, and at subsequent times T = 2, T = 4, and T = 8.

the boundary values of G#. We therefore identify this term with the transport of

energy, associated with the viscous torque, through the annulus. The second term,

on the other hand, represents the rate of loss of energy to the gas. We assume that

this is ultimately converted into heat and radiated, so that the dissipation rate per
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D(r) =
G#′

4πr
=

9

8
ν"#2, (3.29)

where we have assumed a Keplerian angular velocity profile. For blackbody emis-

sion D(r) = σT 4
disk. Substituting for #, and for ν" using the steady-state solution

given by Eq. (3.20), we obtain

T 4
disk =

3GM∗Ṁ

8πσ r3

(

1 −

√

R∗

r

)

. (3.30)

We note that apart from near the inner boundary (r ≫ R∗) the temperature profile

of an actively accreting disk is Tdisk ∝ r−3/4. This has the same form as for a razor-

thin disk that reprocesses stellar radiation (Eq. 2.30). Moreover, the temperature

profile does not depend upon the viscosity. This is an attractive feature of the theory

given that there are uncertainties regarding the origin and efficiency of disk angular

momentum transport, though it also eliminates many possible routes to learning

about the physics underlying ν via observations of steady disks.
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where cs is some characteristic sound speed in the boundary layer region and !K is

the Keplerian angular velocity. Recalling that the vertical scale-height h = cs/!K

we find that

rbl

r
∼
(

h

r

)2

. (3.18)

Provided that the boundary layer (like the disk) is geometrically thin, we conclude
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∗

√

GM∗

R3
∗

, (3.19)

and the steady-state solution for the disk (within which the angular velocity is
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ν# =
Ṁ

3π

(

1 −

√

R∗

r

)

. (3.20)

Once the viscosity is specified, this equation gives the steady-state surface density

profile of a protoplanetary disk with a constant accretion rate Ṁ . Away from the
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The solution given by Eq. (3.20) gives the surface density profile for a steady
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equator of a slowly rotating star, and it is also the traditional choice in the more

exotic circumstance of a disk of gas around a black hole. In classical T Tauri stars
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Time-dependent analytic solutions to Eq. (3.6) can be derived for a number

of simple forms for the viscosity and, although these forms are not particularly
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Apart from its pedagogical value, this version of the evolution equation can be
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conservation equation (Eq. 3.4) which does not assume Keplerian angular velocity.

Setting the time derivative to zero and integrating, we have
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the form
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where the constant of integration, which has the form of an angular momentum

flux, remains to be determined. To specify the constant, we note that at a location in

the disk where d'/dr = 0 the viscous stress vanishes, and the constant is simply

equal to the flux of angular momentum advected inward along with the mass,

constant = −Ṁ · r2'. (3.15)

A simple case to consider is that where the protoplanetary disk extends all the

way down to the surface of a nonrotating (or slowly rotating) star. The disk and

Otra solución importante y útil es la llama “self-similar solution”, asumiendo: 
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mass toward r = ∞. This segregation of mass and angular momentum is a general

feature of the evolution of a viscous disk, and is necessary if accretion is to proceed

without overall angular momentum loss from the system.

Often of greater practical utility than the Green’s function solution is the self-

similar solution also derived by Lynden-Bell & Pringle (1974). Consider a disk in

which the viscosity can be approximated as a power-law in radius

ν ∝ rγ . (3.23)

Suppose that the disk at time t = 0 has the surface density profile corresponding to

a steady-state solution (with this viscosity law) out to r = r1, with an exponential

cut-off at larger radii. Specifically, the initial surface density has the form

#(t = 0) =
C

3πν1r̃γ
exp

[

−r̃ (2−γ )
]

, (3.24)

where C is a normalization constant, r̃ ≡ r/r1, and ν1 ≡ ν(r1). The self-similar

solution is then

#(r̃ , T ) =
C

3πν1r̃γ
T −(5/2−γ )/(2−γ ) exp

[

−
r̃ (2−γ )

T

]

, (3.25)

where

T ≡
t

ts
+ 1, (3.26)

ts ≡
1

3(2 − γ )2

r2
1

ν1
. (3.27)

The evolution of related quantities such as the disk mass and accretion rate can

readily be derived from the above expression for the surface density. The solution is

plotted in Fig. 3.4. Over time, the disk mass decreases while the characteristic scale

of the disk (initially r1) expands to conserve angular momentum. This solution

can be useful both for studying evolving disks analytically, and for comparing

observations of disk masses, accretion rates, or radii with theory.

3.2.3 Temperature profile of accreting disks

The radial dependence of the effective temperature of an actively accreting disk

can be derived by considering the net torque on a ring of width %r . This torque –

(∂G/∂r)%r – does work at a rate

'
∂G

∂r
%r ≡

[

∂

∂r
(G') − G'′

]

%r, (3.28)

where '′ = d'/dr . Written this way, we note that if we consider the whole disk

(by integrating over r) the first term on the right-hand-side is determined solely by
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Se obtiene:
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where !, the angular velocity of the gas in the disk, is at this point unspecified and

need not be the Keplerian angular velocity due to a point mass. The rate of change

of angular momentum in the disk is determined by the change in surface density

due to radial flows (the second term on the left-hand-side) and by the difference

in the torque exerted on an annulus by stresses at the inner and outer edges. For a

viscous fluid, the torque G can be written in the form

G = 2πr · ν$r
d!

dr
· r, (3.5)

where ν is the kinematic viscosity. The torque on an annulus is the product of the

circumference, the viscous force per unit length, and the lever arm r , and is pro-

portional to the gradient of the angular velocity. Note that this dependence, which

is characteristic of a viscous fluid, is only an assumption if the “viscosity” is not a

true microscopic process but rather an effective viscosity resulting from turbulence.

Proceeding, we eliminate vr between Eq. (3.3) and Eq. (3.4) and specialize to a

Keplerian potential for which ! ∝ r−3/2. We then obtain the evolution equation for

the surface density of a geometrically thin disk under the action of internal angular

momentum transport

∂$

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r

(

ν$r1/2
)

]

. (3.6)

The evolution equation is a diffusive partial differential equation for the surface

density $(r, t). It is linear if the viscosity ν is not itself a function of $. The equation

can also be derived directly from the Navier–Stokes equations for a viscous fluid

in cylindrical polar coordinates.

3.2.1 The viscous time scale

The diffusive form of Eq. (3.6) can be made more transparent with a change of

variables. Defining

X ≡ 2r1/2, (3.7)

f ≡
3

2
$X, (3.8)

and assuming that the viscosity ν is a constant, the evolution equation takes the

prototypical form of a diffusion equation

∂f

∂t
= D

∂2f

∂X2
, (3.9)

with a diffusion coefficient D given by

D =
12ν

X2
. (3.10)
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3.2 Surface density evolution of a thin disk

Consider an axisymmetric protoplanetary disk whose gas surface density profile

is given by !(r, t). We assume that the radial velocity vr (r, t) of gas in the disk

is small,2 and note that the fact that the disk is geometrically thin (h/r ≪ 1)

implies that the predominant forces at work are rotational support and gravity (cf.

Section 2.3). If the potential is time-independent, local conservation of angular

momentum implies that in the absence of angular momentum transport or loss

!(r, t) cannot change with time. Accretion and disk evolution will occur in the

presence of angular momentum transport (often described as “viscosity,” or, even

more loosely, as “friction”), which allows local parcels of gas to reduce their

angular momentum and spiral toward the star (global angular momentum con-

servation implies, of course, that gas elsewhere in the disk must gain angular

momentum and move outward). This redistribution of angular momentum due to

stresses within the disk is quite distinct from angular momentum loss – due for

example to a magnetically driven outflow from the disk surface – and the evo-

lution of disks under the action of winds is different from that due to internal

redistribution.

The qualitative evolution of disks in the presence of dissipative processes was

understood in the 1920s by, among others, the well-known geophysicist and

astronomer Harold Jeffreys. The modern theory of thin disks was described in

now-classic papers by Shakura & Sunyaev (1973) and Lynden-Bell & Pringle

(1974). This theory is not fully predictive as it largely bypasses the central ques-

tion of how efficiently angular momentum is transported within a disk flow, but it

nonetheless forms the indispensable core to any discussion of disk evolution.

The evolution of !(r, t) can be derived by considering the continuity equation

(expressing the conservation of mass) and the azimuthal component of the momen-

tum equation (expressing angular momentum conservation). The rate of change of

the mass within an annulus in the disk extending between r and r + "r is given by

∂

∂t
(2πr"r!) = 2πr!(r)vr (r) − 2π (r + "r)!(r + "r)vr (r + "r). (3.2)

Writing for example !(r + "r) = !(r) + (∂!/∂r)"r , and taking the limit for

small "r , the continuity equation yields

r
∂!

∂t
+

∂

∂r
(r!vr ) = 0. (3.3)

Following the same procedure (e.g. Pringle, 1981) conservation of angular momen-

tum gives

r
∂

∂t

(

r2%!
)

+
∂

∂r

(

r2% · r!vr

)

=
1

2π

∂G

∂r
, (3.4)

2 The radial velocity is defined such that vr < 0 corresponds to inflow.

De las ecuaciones de Navier-Stokes (continuidad y conservación de momentum angular) 

se puede derivar la evolución y estructura del disco.
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viscous fluid, the torque G can be written in the form

G = 2πr · ν$r
d!

dr
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∂r

(

ν$r1/2
)

]

. (3.6)
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2
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and assuming that the viscosity ν is a constant, the evolution equation takes the

prototypical form of a diffusion equation

∂f
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= D

∂2f

∂X2
, (3.9)

with a diffusion coefficient D given by

D =
12ν

X2
. (3.10)

Torque de un anillo/anulo 
depende de la fuerza viscosa 
(viscosidad nu) y el brazo de 

palanca (r)

∂ρ
∂t

+ ∇ ⋅ (ρv) = 0
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2 The radial velocity is defined such that vr < 0 corresponds to inflow.

integrando 
en z

Eliminamos v_r combinando ambas ecuaciones y asumimos que omega sigue 
las leyes de Kepler (velocidad angular va como r a la -3/2)
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where !, the angular velocity of the gas in the disk, is at this point unspecified and

need not be the Keplerian angular velocity due to a point mass. The rate of change

of angular momentum in the disk is determined by the change in surface density

due to radial flows (the second term on the left-hand-side) and by the difference

in the torque exerted on an annulus by stresses at the inner and outer edges. For a
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The evolution equation is a diffusive partial differential equation for the surface
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can also be derived directly from the Navier–Stokes equations for a viscous fluid
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The diffusive form of Eq. (3.6) can be made more transparent with a change of

variables. Defining
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f ≡
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and assuming that the viscosity ν is a constant, the evolution equation takes the

prototypical form of a diffusion equation
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with a diffusion coefficient D given by

D =
12ν

X2
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Solución: Tiene la forma de una ecuación de 
difusión para la densidad superficial ! 

Evolución de la densidad superficial de un disco delgado (section 3.2, Armitage)
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Apart from its pedagogical value, this version of the evolution equation can be

useful numerically, since even naive finite difference schemes preserve conserved

quantities accurately when the equation is cast in this form. The diffusion time

scale across a scale !X implied by Eq. (3.9) is just (!X)2/D. Converting back

to the physical variables, we then find that the time scale on which viscosity will

smooth out surface density gradients on a radial scale !r is

τν ∼
(!r)2

ν
. (3.11)

If the disk has a characteristic size r , the surface density at all radii will evolve on

a time scale

τν ≈
r2

ν
. (3.12)

This last time scale is described as the viscous time scale of the disk. It can be

estimated observationally by measuring, for example, the rate at which accretion

on to the star decays as a function of stellar age. For protoplanetary disks around

Solar-type stars it appears to be of the order of a million years.

3.2.2 Solutions to the disk evolution equation

A steady-state solution to Eq. (3.6) can be derived by setting ∂/∂t = 0 and integrat-

ing the resultant ordinary differential equation for the surface density. Applying

the requisite boundary conditions is easiest if we start with the angular momentum

conservation equation (Eq. 3.4) which does not assume Keplerian angular velocity.

Setting the time derivative to zero and integrating, we have

2πr&vr · r2' = 2πr3ν&
d'

dr
+ constant. (3.13)

Noting that the mass accretion rate Ṁ = −2πr&vr we can write this equation in

the form

−Ṁ · r2' = 2πr3ν&
d'

dr
+ constant, (3.14)

where the constant of integration, which has the form of an angular momentum

flux, remains to be determined. To specify the constant, we note that at a location in

the disk where d'/dr = 0 the viscous stress vanishes, and the constant is simply

equal to the flux of angular momentum advected inward along with the mass,

constant = −Ṁ · r2'. (3.15)

A simple case to consider is that where the protoplanetary disk extends all the

way down to the surface of a nonrotating (or slowly rotating) star. The disk and
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Viscosidad

• Viscosidad = resistencia de un 
fluido al movimiento


• En fluidos “normales”  es llamada 
“viscosidad molecular o cinética”


• Depende del camino libre medio  
y tiene que ver con cómo las 
moléculas intercambian momentum 
(colisiones!)


• La frecuencia entre colisiones 
depende de la densidad y 

ν

λ

λ



Viscosidad en discos

•  es demasiado pequeña en 
discos de acreción 


• Número de Reynolds, caracteriza 
el fluido en diferentes situaciones 
 




• Re grandes implica fluido 
altamente turbulento y de baja 
viscosidad.

ν

Re =
uL
ν

∼ 1010



An important problem that needs solution: angular-momentum redistribution.

Alpha-disk model of accretion. Shakura and Sunyaev [1973]  
see also Lynden-Bell & Pringle 1974.  

(magnetorotational instability MRI, Balbus and Hawley 1991)

ν = αcsH

Estudiar el paper de Shakura & Sunyaev (1973)


