Estructura de
Discos Protoplanetarios 2

a.k.a black holes and planets
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A Gallery of Disks and Jets

Astronomers have observed disks across the universe—around young stars in nebulas in our own galaxy and at the centers of galaxies
millions of light-years away. Many of the disks emit long jets of particles in a process that is still not well understood.

In the Orion nebula, about 1,500 light-years from Earth, HH-30, a newborn star about 450 light-
a protoplanetary disk surrounds a star thatis only one Q years from Earth, is embedded in a
million years old. The disk is about 40 billion kilometers protoplanetary disk (viewed edge-on at
across (three times the size of our solar system) and _ left). Two jets of gas stream in opposite
is composed of 99 percent gas and 1 percent dust. directions from the center of the disk,
As the disk evolves, it may form a planetary system like our own. moving as fast as 960,000 kilometers

per hour. The star's magnetic field may be channeling the gas.

NGC 7331, a spiral galaxy about 50 million light-years from Earth, is a disk

just like our own Milky Way galaxy. Data from the Spitzer Space Telescope,a  The active nucleus of M87, a giant
new observatory that looks at infrared radiation, indicate the presence of a elliptical galaxy about 50 million
supermassive black hole in the galaxy’s core. light-years from Earth, is emitting
ajet of high-speed electrons that

stretches 6,500 light-years from

. the galaxy’s core. An accretion disk
American b Belexs

spinning around a supermassive

Blaes “A Universe of Disks” (Scientifi

black hole is putting most of its
COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. power into the jet.



¢,Cuales son las diferencias entre los discos
de acrecio en torno a agujeros negros
estelares, supermasivos, y protoestrellas?
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Continuo de polvo

* | os discos protoplanetarios
tienen temperaturas de 100 a
1500K mas o menos. Eso
significa que son lugares ideales
para encontrar “polvo”. Queée
significa esto?

* A partir de observaciones en
longitudes de onda opticamente
delgadas podemos determinar
las propiedades del polvo. Qué
significa esto?
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Image Credit: NASA, ESA, CSA, STScl



What is radiative transter?

A discipline? A process? A theory? A phenomenon? A tool?

- Radiative transter is essentially a theory,
allows you to study how radiation travels and
interacts with a medium.

. [t's a macroscopic description of the
interaction between light and matter.
Pre-dates quantum mechanics.

- Complex interplay between absorption,
emission and scattering of photons.
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Solar radiation and re-emitted by the

) greenhouse gases.
p?]isaisa?:,:g:gsé?; The effect of this is to

warm the surface
and the troposphere.

EARTH |Infrared radiation
is emitted from the
earth’ ssuﬂaoa

—

Most solarradiation is absorbed
by the surface and warms it
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'Atmospheric perspective’ in
palntings

rt

Bl -

. Atmospheric perspective 1cept
<. .
often used in art, 1s the effect Where
objects at a 1stomce O[ppecxr less
distinct and usually “colder” than
objects close by. This phenomenon is
a direct consequence of the radiative
transter of light as it travels through

the Earth's atmosphere.
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SHADING IS THE PROCESS OF
CALCULATING HOW LIGHT
INTERACTS WITH SURFACES:
WHAT THE OBJECT ACTUALLY
LOOKS LIKE WHEN LIGHT
SHINES ON (OR THROUGH) IT.

This is incredibly complex, especially for things like hair or skin - where the light is partially
shining through the surface. Weta's approach to shading is to look to real-world physics.
The shading models for different surfaces are based on the actual physical properties of
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PHYSICALLY-BASED
SHADING

those surfaces. Our in-house renderers, Manuka and Gazebo, use real-world physics to
calculate how light interacts with each surface - down to the level of calculating
wavelengths of light separately.
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Radiation Transter

Key issue in astropnysics

disk mass scale height 4 flaring exponent

log v E [erg/cm?/s]

star + UV
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Radiation "

Tans:

Key issue in astropnysics

el

. Involves the main cooling processes
and also heating processes

. A lot of the chemistry
radiation

« Link between theory

is driven by

and

observations (diagnostic RT).

Redadl observation
HD169142, Perez et al. (2019)



Radiation "

Tans:

Key issue in astropnysics

el

. Involves the main cooling processes
and also heating processes

. A lot of the chemistry
radiation

« Link between theory

is driven by

and

observations (diagnostic RT).

Hydrodynamic model + RT

Redadl observation

HD169142, Perez et al. (2019)

ALMA imag



Radiation transfer approximation

. good news: we do not need to solve Maxwell’'s equations
. the laws of geometric optics apply sometimes.

- we can use the particle description of electromagnetic radiation and ignore diffraction
(excerpt...)

- For a diluted medium (like nebulae or some parts of protoplanetary disks)
- Index of refraction is set to 1. —> Light travels strictly in straight lines

. In case of scattering, light travels in straight lines between two events
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Radiation transfer equation

The radiative transfer equation is nothing
more than injecting photons into a ray, and
removing photons from that same ray.

I=1v,x,y,z,n)
a1
= — al +j + scattering

ds Q

opacity



Radiation transfer equation

The radiative transfer equation is nothing
more than injecting photons into a ray, and

removin otons from that same ray. e —T
g photons f that V. II/(SI) — II/(S/O)\eJ U
dI 7 ZE/(SO, 5 ) < I
— — P KI/I U iy

g
mass weighted opacity

aI/:pKI/



Radiation transfer equation

Case of a medium in thermal equilibrium

I, =B/(T)
dl | |
r =—-al, +] =—aB(l)+j,=0

k—v ]_y — BU(T) /\_ Kirchhofif’s law

%



Continuous light source Cloud of gas | Kirchhoff’s law
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- CONTINUOUS SPECTRUM | - ~ EMISSION SPECTRUM ABSORPTION SPECTRUM
Spectrum that contains all wavelengths ~ Shows colored lines of light emitted Shows dark lines or gaps in light after
emitted by a hot, dense, light source | | by glowing gas o ) the light passes through a gas
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Radiation transfer equation in LTE

dl,
= px |B (1) — 1]
ds

- To solve the RT for a given medium, we need to put the problem on a grid.
- Choose the right spatial resolution.
- Use a stable numerical integration scheme.

- Use all the appropriate approximations.



Monte Carlo examples

Nphot=1000 "1 Nphot=10000

Nphot=100000 " Nphot=1000000

. C‘ .

\ /

Monte-Carlo 30s MC + ray-tracing 3s

From Pinte (2014) From radmc3d’s manual
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What dictates wnhat we see?

[t has to do with opacities K,

Bell & Lin (1994)
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QOpacities

How are they calculated”

, -
.+ The value of kappa will depend on many mieJ: \QQT}?T‘HGSAI 5
variables: it ]

e
A%

- Composition (most common are silicates,
carbonaceous materials, and ices (water,
CO, etc) - is it a mix?

» Shape - are they really spherical?

Simulation by Alexander Seizinger



Estructura vertical y radial

* Al igual que en las estrellas, la
condicion que fija el perfil de
densidad de gas en un disco
protoplanetario es el equilibrio
hidrostatico.

e Caso simple: disco opticamente
grueso Irradiado por la estrella
central. [Resolver en pizarra]




